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Russell's Paradox was discovered by the mathematican Bertrand 
Russell at the end of the Nineteenth Century.  It is based on S, the set 
of all sets that are not elements of themselves.  For example, we 
might let Big be the set of all sets that have at least 10 members.  
We can find lots of sets with at least 10 members, so Big∈Big and 
Big∉S.  On the other hand, let N be the set of integers {0,1,2,3,...}.  
N is not itself an integer, so N∉N and N∈S. So some sets are in S
and some are not.  The paradox comes when we ask if S is an 
element  of itself; we  get a contradiction either way. 



Some people dismissed Russell's paradox as a stupid word game, but 
to people interested in the foundations of Mathematics it was 
profoundly troubling.  Our set S can't exist because its existence leads 
to a contradiction, yet it was defined in the same way as many other 
mathematical objects.  How can we determine if anything in 
mathematics makes any sense?  This was one of the great research 
questions of the early Twentieth Century. There were numerous 
attempts to move the foundations of mathematics away from Set 
Theory, which seemed especially problematic.   



One of these attempts was called Combinatory Logic, or the logic of 
combinators, by Moses Schonfinkle.  This work led to the 
development of the lambda-calculus, which in turn formed the basis 
for the Scheme language.



A combinatory term is any of the following:
• a variable, taken from an infinite list of possible variables
• a combinator
• (E1 E2), an application of the combinatory term E1 to the 

combinatory term E2.  We take application to be left associative, 
so (E1 E2 E3) is shorthand for ((E1 E2) E3) and (E1 E2 E3 E4) is 
shorthand for (((E1 E2) E3) E4 )

A combinator is either an element of a finite list of primitive functions, 
or a new combinator C defined by an expression such as

(C x1 ... xn) = E
where E is a combinatory term all of whose variables are in the set 
{x1,x2,...,xn}



Note that there is no lambda expression in combinatory logic -- there 
is no way to make a new function on the fly or to have a function 
return a new function.  If we wanted to use Scheme to represent  
combinators, every combinator would be represented by a lambda-
expression with no free variables. Combinatorial logic does have ways 
to write  things that have the same effect as lambda expressions.



Here are some standard combinator definitions.  
• The Identity Combinator (I x) = x  
• The Constant Combinator (K x y) = x.  Remember our convention 

that application associates from the left.  So another way to read 

this definition is ((K x) y) = x.  This says that (K x) is a function 
that, given any argument y, always returns x.

• The Generalized Application Combinator 
(S f g x) = (f x (g x) )



Note that the combinatory expression (S K K) has the same effect as 
the combinator I: For any x ((S K K) x) = (S K K x) = ((K x) (K x) ) = x, 
since ((K x) y) = x for any y.   We say that (S K K) and I are functionally 
equivalent.



The Composition Combinator B is defined by (B f g x) = (f  (g x)).  
The following calculation shows that we can write B in terms of just S 
and K:

(S(K S) K f g x) = ((K S) f (K f) g x)  by the definition of S
= (S (K f) g x)  by the definition of K
= ((K f) x (g x)) by the definition of S
= (f (g x)) by the definition of K
= (B f g x)

So B = S (K S) K



The Diagonalizing Combinator W is defined by (W f x) = (f x x).  We 
can  write W in terms of S and K:

(S S (S K) f x)  = ( (S f) (S K f) x) by the definition of S
= (S f (S K f) x) by left associativity
= (f x (S K f x)) by the definition of S
= (f x ( (K x) (f x)) by the definition of S
= (f x x) by the definition of K
= (W f x)

So W = S S (S K)



It is a remarkable fact that everything in the lambda-calculus can be 
expressed in terms of the two combinators S and K.  Since the lambda 
calculus is Turing Complete (it can simulate a Turing Machine), this 
means that all programs can be written as combinations of S and K.



Rather than dwelling on the details of how combinatory logic works, 
we will focus on just one specific combinator called "Y" that we can 
use to explain recursion.  And rather than expressing Y in terms of S 
and K, we are going to write it in Scheme, which is much easier to 
understand


